Setup immich at Synology DSM
·776 字
1.代理设置 #
由于国内无法访问 ghcr.io ,需要给它配置代理,或者使用他人提供的镜像。
此处使用最简单的方法,即直接在 DSM 中配置 HTTP 代理,HTTP 代理请自行配置。
如图所示,在 控制面板-网络-代理服务器中填入 IP地址和端口,确定后 Docker 服务也会自动配置相同的代理,可通过 docker system info
验证。
$ docker system info
Client:
Version: 24.0.2
Context: default
Debug Mode: false
Server:
Containers: 21
Running: 10
Paused: 0
Stopped: 11
Images: 28
Server Version: 24.0.2
Storage Driver: btrfs
Btrfs:
Logging Driver: db
Cgroup Driver: cgroupfs
Cgroup Version: 1
Plugins:
Volume: local
Network: bridge host ipvlan macvlan null overlay
Log: awslogs db fluentd gcplogs gelf journald json-file local logentries splunk syslog
Swarm: inactive
Runtimes: io.containerd.runc.v2 nvidia runc
Default Runtime: runc
Init Binary: docker-init
containerd version: 067f5021280b8de2059026fb5c43c4adb0f3f244
runc version: 0320c58
init version: ed96d00
Security Options:
apparmor
Kernel Version: 5.10.55+
Operating System: Synology NAS
(containerized)
OSType: linux
Architecture: x86_64
CPUs: 12
Total Memory: 15.18GiB
Name: DSM
ID: a5a189e8-40bb-4b63-9fe6-4b8d70705fe6
Docker Root Dir: /volume2/@docker
Debug Mode: false
HTTP Proxy: 192.168.123.19:7890 # 此处发现代理已经自动同步过来
HTTPS Proxy: 192.168.123.19:7890
Experimental: false
Insecure Registries:
127.0.0.0/8
Live Restore Enabled: false
WARNING: No cpu cfs quota support
WARNING: No cpu cfs period support
WARNING: No blkio throttle.read_bps_device support
WARNING: No blkio throttle.write_bps_device support
WARNING: No blkio throttle.read_iops_device support
WARNING: No blkio throttle.write_iops_device support
2.建立项目 #
由于在上一步已经配置好了代理,此处直接使用 docker-compose
建立项目,需要映射的文件夹请自己提前建立好。
我修改的地方不多:
手动指定了版本号
配置好了 Nvidia 显卡加速,但默认并没有启用,需要启用的话将
image: ghcr.io/immich-app/immich-machine-learning:${IMMICH_VERSION:-release}
改为image: ghcr.io/immich-app/immich-machine-learning:${IMMICH_VERSION:-release}-cuda
即可。直接将机器学习放模型的位置映射出来,便于手动下载
.env
:
# You can find documentation for all the supported env variables at https://immich.app/docs/install/environment-variables
# The location where your uploaded files are stored
UPLOAD_LOCATION=./library
# The location where your database files are stored
DB_DATA_LOCATION=./postgres
# To set a timezone, uncomment the next line and change Etc/UTC to a TZ identifier from this list: https://en.wikipedia.org/wiki/List_of_tz_database_time_zones#List
TZ=Asia/Shanghai
# The Immich version to use. You can pin this to a specific version like "v1.71.0"
IMMICH_VERSION=v1.130.1
# Connection secret for postgres. You should change it to a random password
# Please use only the characters `A-Za-z0-9`, without special characters or spaces
DB_PASSWORD=YOUR_PASSWORD
# The values below this line do not need to be changed
###################################################################################
DB_USERNAME=postgres
DB_DATABASE_NAME=immich
compose.yaml
:
#
# WARNING: To install Immich, follow our guide: https://immich.app/docs/install/docker-compose
#
# Make sure to use the docker-compose.yml of the current release:
#
# https://github.com/immich-app/immich/releases/latest/download/docker-compose.yml
#
# The compose file on main may not be compatible with the latest release.
name: immich
services:
immich-server:
container_name: immich_server
image: ghcr.io/immich-app/immich-server:${IMMICH_VERSION:-release}
# extends:
# file: hwaccel.transcoding.yml
# service: cpu # set to one of [nvenc, quicksync, rkmpp, vaapi, vaapi-wsl] for accelerated transcoding
volumes:
# Do not edit the next line. If you want to change the media storage location on your system, edit the value of UPLOAD_LOCATION in the .env file
- ${UPLOAD_LOCATION}:/usr/src/app/upload
- /etc/localtime:/etc/localtime:ro
env_file:
- .env
ports:
- '2283:2283'
depends_on:
- redis
- database
restart: always
healthcheck:
disable: false
immich-machine-learning:
container_name: immich_machine_learning
# For hardware acceleration, add one of -[armnn, cuda, openvino] to the image tag.
# Example tag: ${IMMICH_VERSION:-release}-cuda
image: ghcr.io/immich-app/immich-machine-learning:${IMMICH_VERSION:-release}
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 1
capabilities:
- gpu
# extends: # uncomment this section for hardware acceleration - see https://immich.app/docs/features/ml-hardware-acceleration
# file: hwaccel.ml.yml
# service: cpu # set to one of [armnn, cuda, openvino, openvino-wsl] for accelerated inference - use the `-wsl` version for WSL2 where applicable
volumes:
- ./model-cache:/cache
env_file:
- .env
restart: always
healthcheck:
disable: false
redis:
container_name: immich_redis
image: docker.io/redis:6.2-alpine@sha256:148bb5411c184abd288d9aaed139c98123eeb8824c5d3fce03cf721db58066d8
healthcheck:
test: redis-cli ping || exit 1
restart: always
database:
container_name: immich_postgres
image: docker.io/tensorchord/pgvecto-rs:pg14-v0.2.0@sha256:739cdd626151ff1f796dc95a6591b55a714f341c737e27f045019ceabf8e8c52
environment:
POSTGRES_PASSWORD: ${DB_PASSWORD}
POSTGRES_USER: ${DB_USERNAME}
POSTGRES_DB: ${DB_DATABASE_NAME}
POSTGRES_INITDB_ARGS: '--data-checksums'
volumes:
# Do not edit the next line. If you want to change the database storage location on your system, edit the value of DB_DATA_LOCATION in the .env file
- ${DB_DATA_LOCATION}:/var/lib/postgresql/data
healthcheck:
test: >-
pg_isready --dbname="$${POSTGRES_DB}" --username="$${POSTGRES_USER}" || exit 1;
Chksum="$$(psql --dbname="$${POSTGRES_DB}" --username="$${POSTGRES_USER}" --tuples-only --no-align
--command='SELECT COALESCE(SUM(checksum_failures), 0) FROM pg_stat_database')";
echo "checksum failure count is $$Chksum";
[ "$$Chksum" = '0' ] || exit 1
interval: 5m
#start_interval: 30s
start_period: 5m
command: >-
postgres
-c shared_preload_libraries=vectors.so
-c 'search_path="$$user", public, vectors'
-c logging_collector=on
-c max_wal_size=2GB
-c shared_buffers=512MB
-c wal_compression=on
restart: always
将镜像拉回来,然后启动,观察日志没问题就可以稳定运行了。
docker-compose pull
docker-compose up
3.导入图片 #
我之前使用的是 DS Photos, 记录一下导入的方法,使用的是immich-cli
。
$ sudo docker run -it -v "/volume1/Photos":/import:ro -e IMMICH_INSTANCE_URL=http://192.168.123.16:2283/api -e IMMICH_API_KEY=YOUR_API_KEY ghcr.io/immich-app/immich-cli:latest upload --recursive /import/ --ignore **/\@eaDir/**
Crawling for assets...
Hashing files | ████████████████████████████████████████ | 100% | ETA: 0s | 16441/16441 assets
Checking for duplicates | ████████████████████████████████████████ | 100% | ETA: 0s | 16441/16441 assets
Found 15669 new files and 772 duplicates
Uploading assets | ██░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ | 4% | ETA: 5h25m | 774 MB/17.9 GB
东西很简单,需要修改的有:
IMMICH_API_KEY
, 在后台建立一个直接复制进去就行了;IMMICH_INSTANCE_URL
, 自己的访问地址复制进去;-v "/volume1
/Photos":/import:ro` 这个是挂载需要上传的照片目录;--ignore **/\@eaDir/**
的目的是屏蔽 DS Photos 生成的预览图。
4. 配置机器学习 #
虽然前文配置好了 DSM 的代理,但是对于 Docker 内部的容器并不会起作用。我采用的方法是直接手动下载放在对应的位置,经测试也没有问题。
模型一共有 2 个需要下载,XLM-Roberta-Large-Vit-B-16Plus 是用来以文搜图、智能搜图的。buffalo_l 是用来人脸识别的。
我展示一下目录结构,以便于手动放置。
$ ls
compose.yaml library model-cache postgres
$ tree model-cache/ -L 3
model-cache/
├── clip
│ └── XLM-Roberta-Large-Vit-B-16Plus
│ ├── config.json
│ ├── textual
│ └── visual
└── facial-recognition
└── buffalo_l
├── detection
└── recognition
9 directories, 1 file
参考资料: